Advertisement

 

 

The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.

The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.
Author Information (click to view)

Fink AM, Dean C, Piano MR, Carley DW,


Fink AM, Dean C, Piano MR, Carley DW, (click to view)

Fink AM, Dean C, Piano MR, Carley DW,

Advertisement

PloS one 2017 11 0912(11) e0187956 doi 10.1371/journal.pone.0187956
Abstract

Elevated renal sympathetic nerve activity (RSNA) accompanies a variety of complex disorders, including obstructive sleep apnea, heart failure, and chronic kidney disease. Understanding pathophysiologic renal mechanisms is important for determining why hypertension is both a common sequelae and a predisposing factor of these disorders. The role of the brainstem in regulating RSNA remains incompletely understood. The pedunculopontine tegmentum (PPT) is known for regulating behaviors including alertness, locomotion, and rapid eye movement sleep. Activation of PPT neurons in anesthetized rats was previously found to increase splanchnic sympathetic nerve activity and blood pressure, in addition to altering breathing. The present study is the first investigation of the PPT and its potential role in regulating RSNA. Microinjections of DL-homocysteic acid (DLH) were used to probe the PPT in 100-μm increments in Nembutal-anesthetized rats to identify effective sites, defined as locations where changes in RSNA could be evoked. A total of 239 DLH microinjections were made in 18 rats, which identified 20 effective sites (each confirmed by the ability to evoke a repeatable sympathoexcitatory response). Peak increases in RSNA occurred within 10-20 seconds of PPT activation, with RSNA increasing by 104.5 ± 68.4% (mean ± standard deviation) from baseline. Mean arterial pressure remained significantly elevated for 30 seconds, increasing from 101.6 ± 18.6 mmHg to 135.9 ± 36.4 mmHg. DLH microinjections also increased respiratory rate and minute ventilation. The effective sites were found throughout the rostal-caudal extent of the PPT with most located in the dorsal regions of the nucleus. The majority of PPT locations tested with DLH microinjections did not alter RSNA (179 sites), suggesting that the neurons that confer renal sympathoexcitatory functions comprise a small component of the PPT. The study also underscores the importance of further investigation to determine whether sympathoexcitatory PPT neurons contribute to adverse renal and cardiovascular consequences of diseases such as obstructive sleep apnea and heart failure.

Submit a Comment

Your email address will not be published. Required fields are marked *

5 × three =

[ HIDE/SHOW ]