Intervertebral disc degeneration (IVDD) is a degenerative musculoskeletal disorder with multiple causative factors, such as age, genetics, mechanics and life style. IVDD contributes to non-specific lower back pain (NLBP), which is a globally prevalent and debilitating musculoskeletal disorder. NLBP has a substantial impact on medical resources and creates an economic burden for the public. Dysregulated phenotypes of nucleus pulposus (NP) cells and endplate chondrocytes, such as proliferation, senescence and apoptosis, along with aberrant expression of extracellular matrix components, including type II collagen and aggrecan, are involved in the pathological process of IVDD. Evidence indicates that non-coding RNAs, mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a vital role in the development of IVDD. In the present review, the potential molecular mechanisms of miRNAs, lncRNAs and circRNAs in the initiation and progression of IVDD were described based on the latest literature. Furthermore, ways to influence the functions of NP cells and endplate chondrocytes in IVDD were also summarized. The presented insights suggested that non-coding RNAs may function as potential targets for the treatment of IVDD.
Copyright: © Jiang et al.