Altered alternative splicing (AS) events are considered pervasive causes that result in the development of carcinogenesis. Herein, we identified reprogrammed expression and splicing profiles of Muscle blind-like protein 1 (MBNL1) transcripts in tumorous tissues compared to those of adjacent normal tissues dissected from individual colorectal cancer (CRC) patients using whole-transcriptome analyses. MBNL1 transcript 8 (MBNL1) containing exons 5 and 7 was majorly generated by cancerous tissues and CRC-derived cell lines compared with those of the normal counterparts. Interplay between the exonic CA-rich element and upregulated SRSF3 facilitated the inclusion of MBNL1 exons 5 and 7, which encode a bipartite nuclear localization signal (NLS) and conformational NLS. Moreover, abundant SRSF3 interfered with the autoregulatory mechanism involved in utilization of MBNL1 exons 5 and 7, resulting in enrichment of the MBNL1 isoform in cultured CRC cell lines. Subsequently, an increase in the MBNL1 isoform drove a shift in the apoptotic chromatin condensation inducer in nucleus 1-S (Acin1-S) isoform to the Acin1-L isoform, leading to diminished DNA fragmentation in cultured CRC cells under oxidative stress. Taken together, SRSF3-MBNL1-Acin1 was demonstrated to constitute an emerging axis which is relevant to proapoptotic signatures and post-transcriptional events of CRC cells.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Author