Advertisement

 

 

Thoracic dysfunction in whiplash associated disorders: A systematic review.

Thoracic dysfunction in whiplash associated disorders: A systematic review.
Author Information (click to view)

Heneghan NR, Smith R, Tyros I, Falla D, Rushton A,


Heneghan NR, Smith R, Tyros I, Falla D, Rushton A, (click to view)

Heneghan NR, Smith R, Tyros I, Falla D, Rushton A,

Advertisement

PloS one 2018 03 2313(3) e0194235 doi 10.1371/journal.pone.0194235
Abstract
BACKGROUND
Research investigating Whiplash Associated Disorder (WAD) has largely focused on the cervical spine yet symptoms can be widespread. Thoracic spine pain prevalence is reported ~66%; perhaps unsurprising given the forceful stretch/eccentric loading of posterior structures of the spine, and the thoracic spine’s contribution to neck mobility/function. Approximately 50% WAD patients develop chronic pain and disability resulting in high levels of societal and healthcare costs. It is time to look beyond the cervical spine to fully understand anatomical dysfunction in WAD and provide new directions for clinical practice and research.

PURPOSE
To evaluate the scope and nature of dysfunction in the thoracic region in patients with WAD.

METHODS
A systematic review and data synthesis was conducted according to a pre-defined, registered (PROSPERO, CRD42015026983) and published protocol. All forms of observational study were included. A sensitive topic-based search strategy was designed from inception to 1/06/16. Databases, grey literature and registers were searched using a study population terms and key words derived from scoping search. Two reviewers independently searched information sources, assessed studies for inclusion, extracted data and assessed risk of bias. A third reviewer checked for consistency and clarity. Extracted data included summary data: sample size and characteristics, outcomes, and timescales to reflect disorder state. Risk of bias was assessed using the Newcastle-Ottawa Scale. Data were tabulated to allow enabling a semi-qualitative comparison and grouped by outcome across studies. Strength of the overall body of evidence was assessed using a modified GRADE.

RESULTS
Thirty eight studies (n>50,000) which were conducted across a range of countries were included. Few authors responded to requests for further data (5 of 9 contacted). Results were reported in the context of overall quality and were presented for measures of pain or dysfunction and presented, where possible, according to WAD severity and time point post injury. Key findings include: 1) high prevalence of thoracic pain (>60%); higher for those with more severe presentations and in the acute stage, 2) low prevalence of chest pain (<22%), 3) evidence of thoracic outlet syndrome, with some association to and involvement of the brachial plexus, 4) muscle dysfunction in the form of heightened activity of the sternocleidomastoid or delayed onset of action of the serratus anterior, 5) high prevalence of myofascial pain and trigger points in the scalene muscles, sternocleidomastoid and mid/lower fibres of trapezius muscle (48-65%), and 6) inconclusive evidence of altered thoracic posture or mobility. CONCLUSIONS
Considerable evidence supports thoracic pain and dysfunction in patients with WAD, involving primarily nerves and muscles. Notwithstanding the low/very low level of evidence from this review, our findings do support a more extensive clinical evaluation of patients presenting with WAD. Additional high quality research is required to further characterise dysfunction across other structures in the thoracic region, including but not limited to the thoracic spine (mobility and posture) and thoracic muscles (stiffness, activation patterns). In turn this may inform the design of clinical trials targeting such dysfunction.

Submit a Comment

Your email address will not be published. Required fields are marked *

five − three =

[ HIDE/SHOW ]