Fumonisin B1 (FB1) is one of the most common mycotoxins contaminating feed and food. Although regulatory limits about fumonisins have been established in some countries, it is still very important to conduct research on lower doses of FB1 to determine the tolerance limits. The aim of this study was to investigate the effects of different concentrations of FB1, provide further evidence about the toxic doses- and exposure time-associated influence of FB1 on mice, especially low levels of FB1 for long-term exposure.
Female BALB/c mice were treated intragastrically (i.g.) with fumonisin B1 (FB1) solutions (0 mg/kg body weight (BW), 0.018 mg/kg BW, 0.054 mg/kg BW, 0.162 mg/kg BW, 0.486 mg/kg BW, 1.458 mg/kg BW and 4.374 mg/kg BW) once a day for 8 weeks to obtain dose- and time-dependent effects on body and organ weights, hematology, blood chemical parameters and liver and kidney histopathology.
After the long-term administration of FB1, the body weights of the mice tended to decrease. Over time, FB1 first increased the relative spleen weight, then increased the relative kidney weight, and finally increased the relative liver weight. The mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), hemoglobin (HGB), white blood cells (WBC), platelets (PLT), and mean platelet volume (MPV) were significantly elevated after treatment with FB1 for 8 weeks. Moreover, exposure time-dependent responses were found for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) level, which were coupled with hepatic histopathological findings, necroinflammation and vacuolar degeneration and detrital necrosis. Linear dose response was also found for liver histopathology, in which, even the minimum dose of FB1 exposure also caused changes. Renal alterations were moderate compared to hepatic alterations.
In conclusion, we demonstrated the systemic toxic effects of different doses of FB1 in female BALB/c mice at different times. Our data indicated that the effects observed in this study at the lowest dose tested are discussed in relation to the currently established provisional maximum tolerable daily intake (PMTDI) for fumonisins. This study suggested that recommendations for the concentration of FB1 in animals and humans are not sufficiently protective and that regulatory doses should be modified to better protect animal and human health. The toxicity of FB1 needs more attention.