Estuarine environmental have been reported to undergo significant fluctuations in oxygen concentrations with hypoxic conditions and subsequent re-oxygenation events being of significant concern for resident fish populations. In this study we assessed the toxicological effects of hypoxia and re-oxygenation on the liver of hypoxia-sensitive spotted sea bass (Lateolabrax maculatus) that were exposed to hypoxia (1.17 mg/L dissolved oxygen) for 12 h and then re-oxygenated for 12 h. The activities of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase in serum significantly increased under hypoxia (p < 0.05) and continued to increase during re-oxygenation (p < 0.05), indicating that normal liver function might be disrupted by hypoxia and might become worse during re-oxygenation for 12h. Total protein, albumin, and globulin levels in serum decreased under hypoxia but began to return to normal during re-oxygenation, showing that protein synthesis in the liver decreased during hypoxia but could be restored by re-oxygenation. We also used RNA-Seq technology to identify changes in gene expression in the liver during hypoxia and re-oxygenation. Transcriptome sequencing revealed that the hypoxia-inducible factor (HIF-1) signaling pathway, apoptosis, and purine metabolism transcripts were significantly enriched under hypoxia and re-oxygenation conditions. A total of 15 and 16 apoptosis-related genes were induced by hypoxia and re-oxygenation stress, respectively. The apoptosis index increased from the normal to the hypoxic condition and was highest under re-oxygenation. Additionally, 19 and 29 genes, that are involved in purine metabolism in the liver of L. maculatus during hypoxia and re-oxygenation, respectively, were dysregulated. Unexpectedly, the serum uric acid level significantly increased during hypoxia and significantly decreased under re-oxygenation, indicating the presence of purine metabolic disorder in the liver of L. maculatus. These results illustrate that hypoxia poses a pronounced threat to hepatocyte function in L. maculatus and that liver damage is difficult to reverse with 12 h of re-oxygenation, and it may actually become worse when re-oxygenation is established.
Copyright © 2021. Published by Elsevier B.V.

Author