Advertisement

 

 

Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling.

Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling.
Author Information (click to view)

Brodehl A, Belke DD, Garnett L, Martens K, Abdelfatah N, Rodriguez M, Diao C, Chen YX, Gordon PM, Nygren A, Gerull B,


Brodehl A, Belke DD, Garnett L, Martens K, Abdelfatah N, Rodriguez M, Diao C, Chen YX, Gordon PM, Nygren A, Gerull B, (click to view)

Brodehl A, Belke DD, Garnett L, Martens K, Abdelfatah N, Rodriguez M, Diao C, Chen YX, Gordon PM, Nygren A, Gerull B,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

PloS one 2017 03 2412(3) e0174019 doi 10.1371/journal.pone.0174019
Abstract
BACKGROUND
Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure, mainly as a result of mutations in cardiac desmosomal genes. Desmosomes are cell-cell junctions mediating adhesion of cardiomyocytes; however, the molecular and cellular mechanisms underlying the disease remain widely unknown. Desmocollin-2 is a desmosomal cadherin serving as an anchor molecule required to reconstitute homeostatic intercellular adhesion with desmoglein-2. Cardiac specific lack of desmoglein-2 leads to severe cardiomyopathy, whereas overexpression does not. In contrast, the corresponding data for desmocollin-2 are incomplete, in particular from the view of protein overexpression. Therefore, we developed a mouse model overexpressing desmocollin-2 to determine its potential contribution to cardiomyopathy and intercellular adhesion pathology.

METHODS AND RESULTS
We generated transgenic mice overexpressing DSC2 in cardiac myocytes. Transgenic mice developed a severe cardiac dysfunction over 5 to 13 weeks as indicated by 2D-echocardiography measurements. Corresponding histology and immunohistochemistry demonstrated fibrosis, necrosis and calcification which were mainly localized in patches near the epi- and endocardium of both ventricles. Expressions of endogenous desmosomal proteins were markedly reduced in fibrotic areas but appear to be unchanged in non-fibrotic areas. Furthermore, gene expression data indicate an early up-regulation of inflammatory and fibrotic remodeling pathways between 2 to 3.5 weeks of age.

CONCLUSION
Cardiac specific overexpression of desmocollin-2 induces necrosis, acute inflammation and patchy cardiac fibrotic remodeling leading to fulminant biventricular cardiomyopathy.

Submit a Comment

Your email address will not be published. Required fields are marked *

3 × 1 =

[ HIDE/SHOW ]