Neonatal/infantile jaundice is relatively common, and most cases resolve spontaneously. However, in the setting of unresolved neonatal cholestasis, a prompt and accurate assessment for biliary atresia is vital to prevent poor outcomes.
To determine whether shear wave elastography (SWE) alone or combined with gray-scale imaging improves the diagnostic performance of US in discriminating biliary atresia from other causes of neonatal jaundice over that of gray-scale imaging alone.
Infants referred for cholestatic jaundice were assessed with SWE and gray-scale US. On gray-scale US, two radiology readers assessed liver heterogeneity, presence of the triangular cord sign, hepatic artery size, presence/absence of common bile duct and gallbladder, and gallbladder shape; associated interobserver correlation coefficients (ICC) were calculated. SWE speeds were performed on a Siemens S3000 using 6C2 and 9 L4 transducers with both point and two-dimensional (2-D) SWE US. Both univariable and multivariable analyses were performed, as were receiver operating characteristic curves (ROC) and statistical significance tests (chi-squared, analysis of variance, t-test and Wilcoxon rank sum) when appropriate.
There were 212 infants with biliary atresia and 106 without biliary atresia. The median shear wave speed (SWS) for biliary atresia cases was significantly higher (P<0.001) than for non-biliary-atresia cases for all acquisition modes. For reference, the median L9 point SWS was 2.1 m/s (interquartile range [IQR] 1.7-2.4 m/s) in infants with biliary atresia and 1.5 m/s (IQR 1.3-1.9 m/s) in infants without biliary atresia (P<0.001). All gray-scale US findings were significantly different between biliary-atresia and non-biliary-atresia cohorts (P<0.001), intraclass correlation coefficient (ICC) range 0.7-1.0. Triangular cord sign was most predictive of biliary atresia independent of other gray-scale findings or SWS – 96% specific and 88% sensitive. Multistep univariable/multivariable analysis of both gray-scale findings and SWE resulted in three groups being predictive of biliary atresia likelihood. Abnormal common bile duct/gallbladder and enlarged hepatic artery were highly predictive of biliary atresia independent of SWS (100% for girls and 95-100% for boys). Presence of both the common bile duct and the gallbladder along with a normal hepatic artery usually excluded biliary atresia independent of SWS. Other gray-scale combinations were equivocal, and including SWE improved discrimination between biliary-atresia and non-biliary-atresia cases.
Shear wave elastography independent of gray-scale US significantly differentiated biliary-atresia from non-biliary-atresia cases. However, gray-scale findings were more predictive of biliary atresia than elastography. SWE was useful for differentiating biliary-atresia from non-biliary-atresia cases in the setting of equivocal gray-scale findings.

Author