eLife 2018 07 137() doi 10.7554/eLife.37754


Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the (C9) gene. Previously we reported that the sequestration of hnRNP H altered the splicing of target transcripts in C9ALS patients (Conlon et al. 2016). Here we show that this signature also occurs in half of 50 post-mortem sporadic, non-C9 ALS/FTD brains. Furthermore, and equally surprisingly, these ‘like-C9’ brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum.