Regulatory T cells (Tregs), traditionally recognized as potent suppressors of immune response, are increasingly attracting attention because of a second major function: residing in parenchymal tissues and maintaining local homeostasis. However, the existence, unique phenotype, and function of so-called tissue Tregs in the heart remain unclear. In mouse models of myocardial infarction (MI), myocardial ischemia/reperfusion injury, or cardiac cryoinjury, the dynamic accumulation of Tregs in the injured myocardium was monitored. The bulk RNA sequencing was performed to analyze the transcriptomic characteristics of Tregs from the injured myocardium after MI or ischemia/reperfusion injury. Photoconversion, parabiosis, single-cell T-cell receptor sequencing, and adoptive transfer were applied to determine the source of heart Tregs. The involvement of the interleukin-33/suppression of tumorigenicity 2 axis and Sparc (secreted acidic cysteine-rich glycoprotein), a molecule upregulated in heart Tregs, was further evaluated in functional assays.
We showed that Tregs were highly enriched in the myocardium of MI, ischemia/reperfusion injury, and cryoinjury mice. Transcriptomic data revealed that Tregs isolated from the injured hearts had plenty of differentially expressed transcripts in comparison with their lymphoid counterparts, including heart-draining lymphoid nodes, with a phenotype of promoting infarct repair, indicating a unique characteristic.
Reference link- https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.046789