To develop a general unsupervised anomaly detection method based only on MR images of normal brains to automatically detect various brain abnormalities.
In this study, a novel method based on three-dimensional deep autoencoder network is proposed to automatically detect and segment various brain abnormalities without being trained on any abnormal samples. A total of 578 normal T2w MR volumes without obvious abnormalities were used for model training and validation. The proposed 3D autoencoder was evaluated on two different datasets (BraTs dataset and in-house dataset) containing T2w volumes from patients with glioblastoma, multiple sclerosis and cerebral infarction. Lesions detection and segmentation performance were reported as AUC, precision-recall curve, sensitivity, and Dice score.
In anomaly detection, AUCs for three typical lesions were as follows: glioblastoma, 0.844; multiple sclerosis, 0.858; cerebral infarction, 0.807. In anomaly segmentation, the mean Dice for glioblastomas was 0.462. The proposed network also has the ability to generate an anomaly heatmap for visualization purpose.
Our proposed method was able to automatically detect various brain anomalies such as glioblastoma, multiple sclerosis, and cerebral infarction. This work suggests that unsupervised anomaly detection is a powerful approach to detect arbitrary brain abnormalities without labeled samples. It has the potential to support diagnostic workflow in radiology as an automated tool for computer-aided image analysis.

Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.