As a chronic airway disease, asthma has two characteristics, tissue remodeling and airway inflammation. This research focused on miR-92a to explore how it works in asthma. We revealed that the expressions of miR-92a were decreased in both serum and lung tissues from ovalbumin-induced asthma mouse. Bioinformatics analysis, quantitative polymerase chain reaction (qPCR) and dual luciferase assay revealed that miR-92a targets MUC5AC, which was linked to mucus hypersecretion in the pulmonary tracts. By injecting miR-92a-mimics into the trachea, both the airway hyper-reactivity and airway inflammation can be alleviated in an asthma mouse model which is induced by ovalbumin. Moreover, the goblet cell phenotype of asthmatic mice is significantly reduced by the action of miR-92a. Furthermore, miR-92a blocked interleukin (IL)-13-induced MUC5AC luciferase activity in 16HBE. Together, upregulation of miR-92a expression in asthmatic mice plays a role in blocking goblet cell metaplasia by targeting MUC5AC, and thus in the treatment of chronic airway diseases, miR-92a can prevent epithelial remodeling, which is a reasonable method.

Author