The pleiotropic effects of zinc deficiency on ion homeostasis have already been described in several plants. Tobacco (Nicotiana tabacum) heavy metal ATPases HMA4.1 and HMA4.2 are involved in zinc and cadmium root-to-shoot translocation. In previous research, we have shown that N. tabacum HMA4 RNAi plants and HMA4 double-nonsense mutants exhibit strongly reduced zinc and cadmium levels in leaves as well as stunted growth. In this study, the ionome and transcriptome of these lines were investigated to better characterize the effect of reduced zinc levels and to understand the impaired growth phenotype. We found that, under standard greenhouse fertilization rates, these lines accumulated up to 4- to 6-fold more phosphorus, iron, manganese, and copper than their respective controls. Under field conditions, HMA4 double-mutant plants also exhibited similar accumulation phenotypes, albeit to a lower extent. In both HMA4 RNAi plants and HMA4 mutants, transcription analysis showed a local zinc-deficiency response in leaves as well as an FIT1-mediated iron-deficiency response in roots, likely contributing to iron and manganese uptake at the root level. A phosphate-starvation response involving HHO2 was also observed in HMA4-impaired plant leaves. The high level of phosphorus observed in HMA4-impaired plants is correlated with leaf swelling and necrosis. The upregulation of aquaporin genes is in line with cellular water influx and the observed leaf swelling phenotype. These results highlight the involvement of HMA4 in zinc homeostasis and related regulatory processes that balance the micro- and macroelements in above-ground organs.
Copyright © 2021. Published by Elsevier Ltd.