This study states that The etiology of life-threatening cardiopulmonary diseases such as Pulmonary Hypertension (PH) and Chronic Obstructive Pulmonary Disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions, which is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human PH and COPD patients for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells (CPPs) and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives.

We discovered a strong reduction of the histone modifications H4K20me2/3 in human COPD but not PH patients, which depend on the activity of the H4K20 di-methyltransferase SUV4-20H1.

Reference link- https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.051680

Author