Mercury and other toxic metals have been suggested to be involved in thyroid disorders, but the distribution and prevalence of mercury in the human thyroid gland is not known. We therefore used two elemental bio-imaging techniques to look at the distribution of mercury and other toxic metals in the thyroid glands of people over a wide range of ages.
Formalin-fixed paraffin-embedded thyroid tissue blocks were obtained from 115 people aged 1-104 years old, with varied clinicopathological conditions, who had thyroid samples removed during forensic/coronial autopsies. Seven-micron sections from these tissue blocks were used to detect intracellular inorganic mercury using autometallography. The presence of mercury was confirmed using laser ablation-inductively coupled plasma-mass spectrometry which can detect multiple elements.
Mercury was found on autometallography in the thyroid follicular cells of 4% of people aged 1-29 years, 9% aged 30-59 years, and 38% aged 60-104 years. Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in samples staining with autometallography, and detected cadmium, lead, iron, nickel and silver in selected samples.
The proportion of people with mercury in their thyroid follicular cells increases with age, until it is present in over one-third of people aged 60 years and over. Other toxic metals in thyroid cells could enhance mercury toxicity. Mercury can trigger genotoxicity, autoimmune reactions, and oxidative damage, which raises the possibility that mercury could play a role in the pathogenesis of thyroid cancers, autoimmune thyroiditis, and hypothyroidism.