The proliferation, migration and dedifferentiation of vascular smooth muscle cells (VSMCs) exert crucial roles in atherosclerosis (AS) progression. The aim of our study was to explore the influences of circular RNA 0004872 (circ_0004872) in platelet-derived growth factor-BB (PDGF-BB)-induced AS cell model and investigate the underlying mechanisms. Real-time quantitative polymerase chain reaction (RT-qPCR) was implemented for the expression detection of circ_0004872, mitogen-activated protein kinase 1 (MAPK1) messenger RNA (mRNA), microRNA-513a-5p (miR-513a-5p) and thioredoxin interacting protein (TXNIP). Cell proliferation was analyzed via Cell Counting Kit 8 (CCK8) assay. Cell migration was assessed via wound healing assay and transwell migration assay. Western blot assay was used to measure the expression of alpha smooth muscle actin (α-SMA), osteopontin (OPN), calponin and TXNIP. Dual-luciferase reporter assay and RNA-pull down assay were used for confirmation of interaction between miR-513a-5p and circ_0004872 or TXNIP. Circ_0004872 expression was elevated in PDGF-BB-induced human aortic vascular smooth muscle cells (HA-VSMCs) and carotid plaque tissues. Circ_0004872 silencing alleviated PDGF-BB-induced proliferation, migration and dedifferentiation in HA-VSMCs. MiR-513a-5p bound to circ_0004872, and circ_0004872 knockdown-induced effects in PDGF-BB-treated HA-VSMCs were largely attenuated by the silencing of miR-513a-5p. MiR-513a-5p bound to the 3′ untranslated region (3’UTR) of TXNIP, and miR-513a-5p overexpression-mediated effects were counteracted by the transfection of pcDNA-TXNIP in PDGF-BB-induced HA-VSMCs. TXNIP was modulated by circ_0004872/miR-513a-5p signaling cascade in HA-VSMCs. Circ_0004872 accelerated PDGF-BB-induced proliferation, migration and dedifferentiation in HA-VSMCs through enhancing TXNIP level via sponging miR-513a-5p.