We explored the utility of the real-time FLIPR Membrane Potential (FMP) assay as a method to assess kappa opioid receptor (KOR)-induced hyperpolarization. The FMP Blue dye was used to measure fluorescent signals reflecting changes in membrane potential in KOR expressing CHO (CHO-KOR) cells. Treatment of CHO-KOR cells with kappa agonists U50,488 or dynorphin [Dyn (1-13)NH] produced rapid and concentration-dependent decreases in FMP Blue fluorescence reflecting membrane hyperpolarization. Both the nonselective opioid antagonist naloxone and the κ-selective antagonists nor-binaltorphimine (nor-BNI) and zyklophin produced rightward shifts in the U50,488 concentration-response curves, consistent with competitive antagonism of the KOR mediated response. The decrease in fluorescent emission produced by U50,488 was blocked by overnight pertussis toxin pretreatment, indicating the requirement for PTX-sensitive G proteins in the KOR mediated response. We directly compared the potency of U50,488 and Dyn (1-13)NH in the FMP and [S]GTPγS binding assays, and found that both were approximately 10 times more potent in the cellular fluorescence assay. The maximum responses of both U50,488 and Dyn (1-13)NH declined following repeated additions, reflecting receptor desensitization. We assessed the efficacy and potency of structurally distinct KOR small molecule and peptide ligands. The FMP assay reliably detected both partial agonists and stereoselectivity. Using KOR-selective peptides with varying efficacies, we found that the FMP assay allowed high throughput quantification of peptide efficacy. These data demonstrate that the FMP assay is a sensitive method for assessing κ-opioid receptor induced hyperpolarization, and represents a useful approach for quantification of potency, efficacy and desensitization of KOR ligands.
Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

Author