Transcriptional programming of the innate immune response is pivotal for host protection. However, the transcriptional mechanisms that link pathogen sensing with innate activation remain poorly understood. During HIV-1 infection, human dendritic cells (DCs) can detect the virus through an innate sensing pathway, leading to antiviral interferon and DC maturation. Here, we develop an iterative experimental and computational approach to map the HIV-1 innate response circuitry in monocyte-derived DCs (MDDCs). By integrating genome-wide chromatin accessibility with expression kinetics, we infer a gene regulatory network that links 542 transcription factors with 21,862 target genes. We observe that an interferon response is required, yet insufficient, to drive MDDC maturation and identify PRDM1 and RARA as essential regulators of the interferon response and MDDC maturation, respectively. Our work provides a resource for interrogation of regulators of HIV replication and innate immunity, highlighting complexity and cooperativity in the regulatory circuit controlling the response to infection.Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Related Posts
Gender Differences in Clinical Characteristics and Comorbidities in Bipolar Disorder: a Study from South India.
September 7, 2020
MiR-193b inhibits autophagy and apoptosis by targeting IGFBP5 in high glucose-induced trophoblasts.
October 5, 2020
Advertisement
Meeting Coverage
- ACC 2020The American College of Cardiology decided to cancel ACC.20/WCC due to COVID-19, which was scheduled to take place March 28-30 in Chicago. However, ACC.20/WCC Virtual Meeting continues to release cutting edge science and practice changing updates for cardiovascular professionals on demand and free through June 2020.
- CROI 2020Every year, CROI hosts some of the world's leading experts in HIV research, who come to present exciting new data and drive forward the field of HIV/AIDS research. This year, due to COVID-19, CROI held their meeting virtually.