Despite advances in technologies for cardiac repair after myocardial infarction (MI), new integrated therapeutic approaches still need to be developed. In this study, we designed a perfusable, multifunctional epicardial device (PerMed) consisting of a biodegradable elastic patch (BEP), permeable hierarchical microchannel networks (PHMs) and a system to enable delivery of therapeutic agents from a subcutaneously implanted pump. After its implantation into the epicardium, the BEP is designed to provide mechanical cues for ventricular remodeling, and the PHMs are designed to facilitate angiogenesis and allow for infiltration of reparative cells. In a rat model of MI, implantation of the PerMed improved ventricular function. When connected to a pump, the PerMed enabled targeted, sustained and stable release of platelet-derived growth factor-BB, amplifying the efficacy of cardiac repair as compared to the device without a pump. We also demonstrated the feasibility of minimally invasive surgical PerMed implantation in pigs, demonstrating its promise for clinical translation to treat heart disease.

Author