In response to an injury, such as myocardial infarction, prolonged hypertension or a cardiotoxic agent, the heart initially adapts through the activation of signal transduction pathways, to counteract, in the short-term, for the cardiac myocyte loss and or the increase in wall stress. However, prolonged activation of these pathways becomes detrimental leading to the initiation and propagation of cardiac remodeling leading to changes in left ventricular geometry and increases in left ventricular volumes; a phenotype seen in patients with systolic heart failure (HF). Here, we describe the creation of a rat model of pressure overload induced moderate remodeling and early systolic dysfunction (MOD) by ascending aortic banding (AAB) via a vascular clip with an internal area of 2 mm. The surgery is performed in 200 g Sprague-Dawley rats. The MOD HF phenotype develops at 8-12 weeks after AAB and is characterized noninvasively by means of echocardiography. Previous work suggests the activation of signal transduction pathways and altered gene expression and post-translational modification of proteins in the MOD HF phenotype that mimic those seen in human systolic HF; therefore, making the MOD HF phenotype a suitable model for translational research to identify and test potential therapeutic anti-remodeling targets in HF. The advantages of the MOD HF phenotype compared to the overt systolic HF phenotype is that it allows for the identification of molecular targets involved in the early remodeling process and the early application of therapeutic interventions. The limitation of the MOD HF phenotype is that it may not mimic the spectrum of diseases leading to systolic HF in human. Moreover, it is a challenging phenotype to create, as the AAB surgery is associated with high mortality and failure rates with only 20% of operated rats developing the desired HF phenotype.

Author