Patients with chronic obstructive asthma (COA) develop airflow obstruction caused by subepithelial fibrosis. Although a disintegrin and metalloproteinase 17 (ADAM17) has been implicated in lung inflammation and tissue fibrosis, its role in airway fibrosis in COA has not been explored. Here, we found marked overexpression of ADAM17, phosphorylated ADAM17, and connective tissue growth factor (CTGF) in human airway fibroblasts from COA patients, compared with those of normal subjects. Similarly, levels of ADAM17, CTGF, α-smooth muscle actin (α-SMA), and collagen were increased in endobronchial biopsies from COA patients, but not in controls. In an ovalbumin-challenge asthma model, airway fibrosis was inhibited in ADAM17/Cre mice compared to control mice. TGF-β- and thrombin-induced fibrotic protein expression was reduced by ADAM17 small interfering (si)RNA, TAPI-0 (an ADAM17 inhibitor), and EGFR siRNA. In addition, exogenous HB-EGF reversed fibrotic response in ADAM17 knockdown human lung fibroblasts. ADAM17 causes subepithelial fibrosis through regulation of enhanced extracellular matrix production and fibroblast differentiation and is the common pathway for airway fibrosis mediated by TGF-β and thrombin through an aberrant ADAM17/EGFR signalling pathway.
Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

Author