Osteoarthritis (OA) is a debilitating disease with no effective disease-modifying therapies. Among the challenges for developing treatment is achieving targeted drug delivery to affected joints. This has contributed to the failure of several drug candidates for the treatment of OA. Over the past 20 years, significant advances have been made in antisense oligonucleotide (ASO) technology for achieving targeted delivery to tissues and cells both in vitro and in vivo. Since ASOs are able to bind specific gene regions and regulate protein translation, they are useful for correcting aberrant endogenous mechanisms associated with certain diseases. ASOs can be delivered locally through intra-articular injection, and can enter cells through natural cellular uptake mechanisms. Despite this, ASOs have yet to be successfully tested in clinical trials for the treatment of OA. Recent chemical modification to ASOs have further improved cellular uptake and reduced toxicity. Among these are locked nucleic acid (LNA)-based ASOs, which have shown promising results in clinical trials for diseases such as hepatitis and dyslipidemia. Recently, LNA-based ASOs have been tested both in vitro and in vivo for their therapeutic potential in OA, and some have shown promising joint-protective effects in preclinical OA animal models. In order to accelerate the testing of ASO therapies in a clinical trial setting for OA, further investigation into delivery mechanisms is required. In this review article, we discuss opportunities for viral-, particle-, biomaterial-, and chemical modification-based therapies, which are currently in preclinical testing. We also address potential roadblocks in the clinical translation of ASO-based therapies for the treatment of OA, such as the limitations associated with OA animal models and the challenges with drug toxicity. Taken together, we review what is known and what would be useful to accelerate translation of ASO-based therapies for the treatment of OA.
Copyright © 2020. Published by Elsevier Inc.