In the search of an effective antiviral formulation, the natural product curcumin (CUR) was encapsulated into poly(lactic-co-glycolic acid) nanoparticles, a non-toxic bioresorbable and biocompatible copolymer. The resulting CUR containing particles (PLGA-CUR NPs) were characterized and analysed for antiviral activity against Zika virus (ZIKV) infection.
The PLGA-CUR NPs were characterized by Fourier transform infrared, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy and thermogravimetric analysis and release profile. Cytotoxicity of PLGA-CUR and the antiviral activity against ZIKV were determined in Vero cells. The effect of PLGA-CUR NPs on viral RNA synthesis and protein expression was analysed by RT-qPCR and immunofluorescence staining, respectively.
The PLGA-CUR NPs showed an appropriate in vitro drug release profile. Our studies of the antiviral activity of PLGA-CUR NPs and CUR against ZIKV by virus yield reduction as well as viral RNA synthesis and protein expression have shown that PLGA-CUR formulation is more effective than free CUR to inhibit ZIKV infection of Vero cells.
Our results demonstrate for the first time the antiviral activity against ZIKV of PLGA nanoparticles charged with CUR, suggesting that PLGA-CUR NPs are promising candidates for a drug formulation against human pathogenic flaviviruses.

© The Author(s) 2021. Published by Oxford University Press on behalf of Royal Pharmaceutical Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Author