Genetic disorders and congenital abnormalities are present in 2-5% of births all over the world and can cause up to 50% of all early childhood deaths. The establishment of sophisticated and controlled techniques for customizing DNA manipulation is significant for the therapeutic role in such disorders and further research on them. One such technique is CRISPR that is significant towards optimizing genome editing and therapies, metabolic fluxes as well as artificial genetic systems. CRISPR-Cas9 is a molecular appliance that is applied in the areas of genetic and protein engineering. The CRISPR-CAS system is an integral element of prokaryotic adaptive immunity that allows prokaryotic cells to identify and kill any foreign DNA. The Gene editing property of CRISPR finds various applications like diagnostics and therapeutics in cancer, neurodegenerative disorders, genetic diseases, blindness, etc. This review discusses applications of CRISPR as a therapeutic in various disorders including several genetic diseases (including sickle cell anemia, blindness, thalassemia, cystic fibrosis, hereditary tyrosinemia type I, duchenne muscular dystrophy, mitochondrial disorders), Cancer, Huntington’s disease and viral infections (like HIV, COVID, etc.) along with the prospects concerning them. CRISPR-based therapy is also being researched and defined for COVID-19. The related mechanism of CRISPR has been discussed alongside highlighting challenges involved in therapeutic applications of CRISPR.
Copyright © 2018. Published by Elsevier Inc.

Author