The flower of chrysanthemum, used worldwide as a medicinal and edible product, has shown various bioactivities, such as anti-inflammatory, antioxidant, anti-tumorigenic, and hepatoprotective activities, as well as cardiovascular protection. However, the effect of Chrysanthemum morifolium Ramat. on the regulation of osteoclast differentiation has not yet been reported. In this study, we aimed to investigate the inhibitory effect of Chrysanthemum morifolium Ramat. water extract (CME) on RANKL-induced osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs).
Bone marrow-derived macrophages (BMMs) isolated from the C57BL/6 J mice. The viability of BMMs was detected with MTT assays. Inhibitory effects of CME on osteoclast differentiation and bone resorption was measured by TRAP staining and Pit assay. Osteoclast differentiation-associated gene expression were assessed by Real-time quantitative polymerase chain reaction. Intracellular signaling molecules was assessed by western blot.
CME significantly inhibited osteoclast differentiation in BMMs without cytotoxicity, besides inhibiting MAPK/c-fos and PLCγ2/CREB activation. The inhibitory effects of CME on differentiation-related signaling molecules resulted in significant repression of NFATc1 expression, which is a key transcription factor in osteoclast differentiation, fusion, and activation.
Our results confirmed the inhibition of RANKL-induced PLCγ2/CREB/c-fos/NFATc1 activation by CME during osteoclast differentiation. The findings collectively suggested CME as a traditional therapeutic agent for osteoporosis, RA, and periodontitis.

Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.