Immune status in the tumor microenvironment is an important determinant of cancer progression and patient prognosis. Although a higher immune activity is often associated with a better prognosis, this trend is not absolute and differs across cancer types. We aimed to give insights into why some cancers do not show better survival despite higher immunity by assessing the relationship between different biological factors, including cytotoxicity, and patient prognosis in various cancer types using RNA-seq data collected by The Cancer Genome Atlas.
Results showed that a higher immune activity was associated with worse overall survival in patients with uveal melanoma and low-grade glioma, which are cancers of immune-privileged sites. In these cancers, epithelial or endothelial mesenchymal transition and inflammatory state as well as immune activation had a notable negative correlation with patient survival. Further analysis using additional single-cell data of uveal melanoma and glioma revealed that epithelial or endothelial mesenchymal transition was mainly induced in retinal pigment cells or endothelial cells that comprise the blood-retinal and blood-brain barriers, which are unique structures of the eye and central nervous system, respectively. Inflammation was mainly promoted by macrophages, and their infiltration increased significantly in response to immune activation. Furthermore, we found the expression of inflammatory chemokines, particularly CCL5, was strongly correlated with immune activity and associated with poor survival, particularly in these cancers, suggesting that these inflammatory mediators are potential molecular targets for therapeutics.
In uveal melanoma and low-grade glioma, inflammation from macrophages and epithelial or endothelial mesenchymal transition are particularly associated with a poor prognosis. This implies that they loosen the structures of the blood barrier and impair homeostasis and further recruit immune cells, which could result in a feedback loop of additional inflammatory effects leading to runaway conditions.

© 2022. The Author(s).