An increasing number of studies harness resting-state fMRI functional connectivity analysis to investigate the neurobiological mechanisms of insomnia. The results to date are inconsistent and the detection of minor and widely distributed alterations in functional connectivity requires large sample sizes. The present study investigated associations between insomnia symptoms and resting-state functional connectivity at the whole-brain level in the largest sample to date. This cross-sectional analysis used resting-state imaging data from the UK Biobank, a large scale, population-based biomedical database. The analysis included 29,423 participants (age: 63.1 ± 7.5 years, 54.3% female), comprising 9210 with frequent insomnia symptoms and 20,213 controls without. Linear models were adjusted for relevant clinical, imaging, and socio-demographic variables. The Akaike information criterion was used for model selection. Multiple comparisons were corrected using the false discovery rate with a significance level of q < 0.05. Frequent insomnia symptoms were associated with increased connectivity within the default mode network and frontoparietal network, increased negative connectivity between the default mode network and the frontoparietal network, and decreased connectivity between the salience network and a node of the default mode network. Furthermore, frequent insomnia symptoms were associated with altered functional connectivity between nodes comprising sensory areas and the cerebellum. These functional alterations of brain networks may underlie dysfunctional affective and cognitive processing in insomnia and contribute to subjectively and objectively impaired sleep. However, it must be noted that the item that was used to assess frequent insomnia symptoms in this study did not assess all the characteristics of clinically diagnosed insomnia.© 2022 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

Author