Infections due to multidrug-resistant (MDR) bacteria constitute a real problem in the public health worldwide. Hypericum roeperianum Schimp. ex A. Rich (Hypericaceae) is used traditionally for treatment of various ailments such as abdominal pains, constipation, diarrhea, indigestion, nausea, and bacterial diseases.
This study was aimed at investigating the antibacterial and antibiotic-modifying activity of the crude methanol extracts (HRB), ethyl-acetate soluble fraction (HRBa), residual material (HRBb), and 11 compounds from the bark of Hypericum roeperianum against multi-drug resistant (MDR) bacteria expressing active efflux pumps.
The antibacterial activity, the efflux pump effect using the efflux pump inhibitor (EPI), phenylalanine-arginine-ß-naphthylamide (PAβN), as well as the antibiotic-modifying activity of samples were determined using the broth micro-dilution method. Spectrophotometric methods were used to evaluate the effects of HRB and 8,8-bis(dihydroconiferyl) diferulate (11) on bacterial growth, and bacterial membrane damage, whereas follow-up of the acidification of the bacterial culture was used to study their effects on bacteria proton-ATPase pumps.
The crude extract (HRB), HRBa, and HRBb had selective antibacterial activity with MICs ranging from 16 to 512 μg/mL. Phytochemical 11 displayed the best antibacterial activity (0.5 ≤ MIC ≤ 2 μg/mL). The activity of HRB and 11 in the presence of EPI significantly increased on the tested bacteria strains (up to 32-fold). The activity of cloxacillin (CLO), doxycycline (DOX), and tetracycline (TET), was considerably improved (up to 64-fold) towards the multidrug-resistant Enterobacter aerogenes EA-CM64 strain. The crude extract (HRB) and 11 induced the leakage of bacterial intracellular components and inhibited the proton-ATPase pumps.
The crude extract (HRB) and 8,8-bis(dihydroconiferyl)diferulate from the bark of Hypericum roeperianum are good antibacterial candidates that deserve further investigations to achieve antibacterial drugs to fight infections involving MDR bacteria.

Copyright © 2021 Elsevier B.V. All rights reserved.