Observational studies have suggested strong associations between sleep duration and many cardiovascular diseases (CVDs), but causal inferences have not been confirmed. We aimed to determine the causal associations between genetically predicted sleep duration and 12 CVDs using both linear and nonlinear Mendelian randomization (MR) designs.
Genetic variants associated with continuous, short (≤6 h) and long (≥9 h) sleep durations were used to examine the causal associations with 12 CVDs among 404 044 UK Biobank participants of White British ancestry. Linear MR analyses showed that genetically predicted sleep duration was negatively associated with arterial hypertension, atrial fibrillation, pulmonary embolism, and chronic ischaemic heart disease after correcting for multiple tests (P < 0.001). Nonlinear MR analyses demonstrated nonlinearity (L-shaped associations) between genetically predicted sleep duration and four CVDs, including arterial hypertension, chronic ischaemic heart disease, coronary artery disease, and myocardial infarction. Complementary analyses provided confirmative evidence of the adverse effects of genetically predicted short sleep duration on the risks of 5 out of the 12 CVDs, including arterial hypertension, pulmonary embolism, coronary artery disease, myocardial infarction, and chronic ischaemic heart disease (P < 0.001), and suggestive evidence for atrial fibrillation (P < 0.05). However, genetically predicted long sleep duration was not associated with any CVD.
This study suggests that genetically predicted short sleep duration is a potential causal risk factor of several CVDs, while genetically predicted long sleep duration is unlikely to be a causal risk factor for most CVDs.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com.

Author