The objective of this research was to characterize head impacts with a validated mouthpiece sensor in competitive youth female soccer players during a single season with a validated mouthpiece sensor. Participants included 14 youth female soccer athletes across 2 club-level teams at different age levels (team 1, ages 12-13 y; team 2, ages 14-15 y). Head impact and time-synchronized video data were collected for 66 practices and games. Video data were reviewed to characterize the type and frequency of contact experienced by each athlete. A total of 2216 contact scenarios were observed; heading the ball (n = 681, 30.7%) was most common. Other observed contact scenarios included collisions, dives, falls, and unintentional ball contact. Team 1 experienced a higher rate of headers per player per hour of play than team 2, while team 2 experienced a higher rate of collisions and dives. A total of 935 video-verified contact scenarios were concurrent with recorded head kinematics. While headers resulted in a maximum linear acceleration of 56.1g, the less frequent head-to-head collisions (n = 6) resulted in a maximum of 113.5g. The results of this study improve the understanding of head impact exposure in youth female soccer players and inform head impact exposure reduction in youth soccer.