Virtual reality (VR) interventions can simulate real-world sensory environments. The purpose of this study was to test the feasibility of a novel VR application (app) developed for a Head Mounted Display (HMD) to target dizziness, imbalance and sensory integration in a functional context for patients with vestibular disorders. Here we describe the design of the app as well as self-reported and functional outcomes in vestibular patients before and after participating in vestibular rehabilitation using the app. Our app includes a virtual street, airport, subway or a park. The clinician controls the visual and auditory load including several levels of direction, amount and speed of virtual pedestrians. Clinicians enrolled 28 patients with central (mild-traumatic brain injury [mTBI] or vestibular migraine) and peripheral vestibular disorders. We recorded the Simulator Sickness Questionnaire, Visual Vertigo Analogue Scale (VVAS), Dizziness Handicap Inventory (DHI), Activities-Specific Balance Confidence Scale (ABC), 8-foot up and go (8FUG) and Four-Step Square Test (FSST) before and after the intervention. Within the 15 patients who completed the study, 12 with peripheral hypofunction showed significant improvements on the VVAS ( = 0.02), DHI ( = 0.008) and ABC ( = 0.02) and a small significant improvement on the FSST ( = 0.015). Within-session changes in symptoms were minimal. Two patients with mTBI showed important improvements, but one patient with vestibular migraine, did not. HMD training within increasingly complex immersive environments appears to be a promising adjunct modality for vestibular rehabilitation. Future controlled studies are needed to establish effectiveness.IMPLICATIONS FOR REHABILITATIONVirtual Reality allows for gradual introduction of complex semi-real visual environments.Within VR training patients can re-learn to maintain balance when presented with a sensory conflict in a safe environment.Head Mounted Display training appears to be a promising adjunct modality for vestibular rehabilitation.Portability and affordability of the hardware and software enhance the potential clinical outreach.

References

PubMed