This review lists current evidences for a contribution of gut mycobiota to the pathogenesis of SpA and related conditions. Gut mycobiota has a small size as compared to bacterial microbiota, but an even greater inter and intra-individual variability. Although most fungi (brought by food or air) are only transitory present, a core mycobiota of gut resident fungi exists, and interplays with bacteria in a complex manner. A dysbiosis of this gut mycobiota has been observed in Crohn’s disease and sclerosing cholangitis, with decreased proportion of Saccharomyces cerevisiae and outgrowth of more pathogenic gut fungi. Fungal-induced lower number of commensal gut bacteria can promote translocation of some bacterial/fungal antigens through mucosae, and live fungi can also cross the epithelial border in Crohn’s disease. This dysbiosis also lower the ability of bacteria to metabolize tryptophan into regulatory metabolites, consequently enhancing tryptophan metabolism within human cells, which might contribute to fatigue. Translocation of mycobiotal antigens like curdlan (beta-glucan), which plays a major role in the pathogenesis of SpA in the SGK mice, has been observed in humans. This translocation of fungal antigens in human SpA might account for the anti-Saccharomyces antibodies found in this setting. Contribution of fungal antigens to psoriasis and hidradenitis suppurativa would fit with the preferential homing of fungi in the skin area most involved in those conditions. Fungal antigens also possess autoimmune uveitis-promoting function. As genes associated with SpA (CARD9 and IL23R) strongly regulate the innate immune response against fungi, further studies on fungi contribution to SpA are needed.
Copyright © 2021. Published by Elsevier Masson SAS.