Glaucoma, a heterogeneous set of progressively degenerative optic neuropathies characterized by a loss of retinal ganglion cells (RGCs) and typical visual field deficits that can progress to blindness, is a neurodegenerative disease involving both ocular and visual brain structures. Although elevated intraocular pressure (IOP) remains the most important modifiable risk factor of primary open-angle glaucoma (POAG) and is the main therapeutic target in treating glaucoma, other factors that influence the disease course are involved and reaching the optimal IOP target does not stop the progression of glaucoma, as the visual field continues to narrow. In addition to a managed IOP, neuroprotection may be beneficial by slowing the progression of glaucoma and improving the visual defects. Citicoline (cytidine 5′-diphosphocholine) is a naturally occurring endogenous compound that has been investigated as a novel therapeutic agent for the management of glaucoma. Citicoline has demonstrated activity in a range of central neurodegenerative diseases, and experimental evidence suggests a it performs a neuromodulator and neuroprotective role on neuronal cells, including RGCs, associated with improvement in visual function, extension of the visual field and central benefits for the patient. This review aims to critically summarize the current evidence for the neuroprotective properties of citicoline in glaucoma.