Chronic hepatitis B virus (HBV) infection constitutes a global health issue with limited current therapeutic efficacy owing to the persistence of viral episomal DNA (cccDNA). The CRISPR/Cas9 system, a newly developed, powerful tool for genome editing and potential gene therapy, requires efficient delivery of CRISPR components for successful therapeutic application. Here, we investigated the effects of lentiviral- or adeno-associated virus 2 (AAV2) vector-mediated delivery of 3 guide (g)RNAs/Cas9 selected from 16 gRNAs. These significantly suppressed HBV replication in cells, with WJ11/Cas9 exhibiting highest efficacy and chosen for in vivo study. AAV2/WJ11-Cas9 also significantly inhibited HBV replication and significantly reduced cccDNA in the tested cells. Moreover, AAV2/WJ11-Cas9 enhanced entecavir effects when used in combination, indicative of different modes of action. Notably, in humanized chimeric mice, AAV2/WJ11-Cas9 significantly suppressed HBcAg, HBsAg, and HBV DNA along with cccDNA in the liver tissues without significant cytotoxicity; accordingly, next generation sequencing data showed no significant genomic mutations. To our knowledge, this represents the first evaluation of the CRISPR/Cas9 system using an HBV natural infection mode. Therefore, WJ11/Cas9 delivered by comparatively safer AAV2 vectors may provide a new therapeutic strategy for eliminating HBV infection and serve as an effective platform for curing chronic HBV infection.
Copyright © 2020. Published by Elsevier B.V.