Significant morbidity, mortality, and financial burden are associated with cardiac rhythm abnormalities. Conventional investigative tools are often unsuccessful in detecting cardiac arrhythmias because of their episodic nature. Smartwatches have gained popularity in recent years as a health tool for the detection of cardiac rhythms.
This study aims to systematically review and meta-analyze the diagnostic accuracy of smartwatches in the detection of cardiac arrhythmias.
A systematic literature search of the Embase, MEDLINE, and Cochrane Library databases was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to identify studies reporting the use of a smartwatch for the detection of cardiac arrhythmia. Summary estimates of sensitivity, specificity, and area under the curve were attempted using a bivariate model for the diagnostic meta-analysis. Studies were examined for quality using the Quality Assessment of Diagnostic Accuracy Studies 2 tool.
A total of 18 studies examining atrial fibrillation detection, bradyarrhythmias and tachyarrhythmias, and premature contractions were analyzed, measuring diagnostic accuracy in 424,371 subjects in total. The signals analyzed by smartwatches were based on photoplethysmography. The overall sensitivity, specificity, and accuracy of smartwatches for detecting cardiac arrhythmias were 100% (95% CI 0.99-1.00), 95% (95% CI 0.93-0.97), and 97% (95% CI 0.96-0.99), respectively. The pooled positive predictive value and negative predictive value for detecting cardiac arrhythmias were 85% (95% CI 0.79-0.90) and 100% (95% CI 1.0-1.0), respectively.
This review demonstrates the evolving field of digital disease detection. The current diagnostic accuracy of smartwatch technology for the detection of cardiac arrhythmias is high. Although the innovative drive of digital devices in health care will continue to gain momentum toward screening, the process of accurate evidence accrual and regulatory standards ready to accept their introduction is strongly needed.
PROSPERO International Prospective Register of Systematic Reviews CRD42020213237; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=213237.

©Scarlet Nazarian, Kyle Lam, Ara Darzi, Hutan Ashrafian. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 27.08.2021.