Rod photoreceptor cells initiate scotopic vision when the light receptor rhodopsin absorbs a photon of light to initiate phototransduction. These photoreceptor cells are exquisitely sensitive and have adaptive mechanisms in place to maintain optimal function and to overcome dysfunctional states. One adaptation rod photoreceptor cells exhibit is in the packing properties of rhodopsin within the membrane. The mechanism underlying these adaptations is unclear. Mouse models of congenital stationary night blindness with different molecular causes were investigated to determine which signals are important for adaptations in rod photoreceptor cells. Night blindness in these mice is caused by dysfunction in either rod photoreceptor cell signaling or bipolar cell signaling. Changes in the packing of rhodopsin within photoreceptor cell membranes were examined by atomic force microscopy. Mice expressing constitutively active rhodopsin did not exhibit any adaptations, even under constant dark conditions. Mice with disrupted bipolar cell signaling exhibited adaptations, however, they were distinct from those in mice with disrupted phototransduction. These differential adaptations demonstrate that although multiple molecular defects can lead to a similar primary defect causing disease (i.e., night blindness), they can cause different secondary effects (i.e., adaptations). The lighting environment or signaling defects present from birth and during early rearing can condition mice and affect the adaptations occurring in more mature animals. A comparison of effects in wild-type mice, mice with defective phototransduction, and mice with defective bipolar cell signaling, indicated that bipolar cell signaling plays a role in this conditioning but is not required for adaptations in more mature animals.
Copyright © 2020. Published by Elsevier B.V.