Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug whose clinical application is limited by serious cardiotoxic side effects. Dihydromyricetin (DHM), a flavonoid compound extracted from the Japanese raisin tree (Hovenia dulcis), is cardioprotective in patients with heart failure; however, the underlying mechanisms are poorly understood. The aim of this study was to assess the possible anti-inflammatory properties of DHM in a rat model of DOX-induced cardiotoxicity and DOX-treated H9C2 cells, and gain insights into the molecular mechanisms that mediate these effects. The results showed that DHM treatment significantly improved the myocardial structure and function in DOX-exposed rats by alleviating NLRP3 inflammasome-mediated inflammation. DHM also inhibited DOX-induced activation of the NLRP3 inflammasome in H9C2 cells. This effect was mediated by inhibition of caspase-1 activity, suppression of IL-1β and IL-18 release, and upregulation of SIRT1 protein levels in vivo and in vitro. Moreover, selective inhibition of SIRT1 blocked the protective effects of DHM. Collectively, our findings indicate that DHM protects against DOX-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation via stimulation of the SIRT1 pathway.
Copyright © 2020 Elsevier Inc. All rights reserved.

Author