The objective of this study is to explore the role of miR-210 in the growth of ovarian cancer cells and the correlation with radiotherapy and to elucidate underlying molecular mechanisms.
Human ovarian cancer cell lines OVCAR3 and SKOV3 were cultured in vitro, and miR-210 over-expression and low-expression ovarian cancer cell models were established by cell transfection. MTT assay was used to detect the proliferation activity. Transwell was used to detect the migration and invasion abilities. Western blot measured the expression of proteins related to cell proliferation, migration, and invasion. The cells were treated with different doses of ionizing radiation, and then the cell proliferation activity was detected by MTT. The expression of apoptosis-related proteins was detected by Western blot. The Caspase-Glo® Kit was used to detect the activity of cellular caspase 3/7 enzymes.
The proliferation, migration, and invasion abilities of miR-210 over-expression ovarian cancer cells were increased (p < 0.05), the expressions of PTEN and E-cadherin were decreased, and the expression of p-Protein kinase B (AKT), N-cadherin, Snail, and Vimentin were elevated. After ionizing radiation, the sensitivity of miR-210 over-expression cells to radiotherapy was decreased, the expression of apoptosis-related protein Bax was decreased, the expression of Bcl-2 was increased, and the activity of cellular caspase 3/7 enzyme was reduced (p < 0.05).
miR-210 can promote the proliferation, migration, and invasion of ovarian cancer cells by activating the AKT signaling pathway and regulating the expression of Epithelial-mesenchymal transition-related proteins. miR-210 can reduce the sensitivity of ovarian cancer cells to radiotherapy by inhibiting apoptosis, which might serve as a potential target for the treatment of ovarian tumors.

© 2020 S. Karger AG, Basel.

References

PubMed