Osteocytes are extremely sensitive to mechanical loading and govern bone remodeling process. Advanced glycation end products (AGEs) have the capacity to induce osteocyte apoptosis. In order to investigate the effects of AGEs on the mechanosensitivity of osteocytes, the osteocytic-like cells (MLO-Y4) were treated with low (50 μg/ml) and high (400 μg/ml) concentrations of AGEs for 1day and exposed to 15 dyne/cm of fluid shear stress. Then the F-actin cytoskeleton, prostaglandin E2(PGE2), Nitric oxide (NO), the Wnt/β-catenin signaling pathway activity mRNA expressions were detected for osteocytes mechanical response changes; osteocalcin (OCN) and receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) were detected for the regulation on bone remodeling function of osteocytes. The results showed that AGEs accumulation inhibited the sense of osteocytes to external mechincal loading, promoted shear-induced NO and PGE2 release, suppressed the mechanosensitivity of Wnt/β-catenin signaling pathway, and furthermore promoted OCN and RANKL/OPG mRNA expressions. These indicated AGEs had an adverse impact on the mechanosensitivity of osteocytes, and led to a negative effect on their regulation of bone remodeling process under mechanical stimulation. This work provides a new perspective to interpret the alteration mechanism of osteocytes mechanosensitivity and provides a novel clue for exploring the mechanism of osteoporosis.
Copyright © 2021 Elsevier Inc. All rights reserved.