Microvascular changes and retinal degeneration precede diabetic retinopathy. Oxidative stress alters several intracellular signaling pathways, which form the basis of diabetic retinopathy. Many antioxidants have been investigated as possible preventive and therapeutic remedies for diabetic retinopathy. The current study investigated the modulatory effects of trans-resveratrol on streptozotocin-induced type 1 diabetes mediated changes in the transcription and levels of apoptosis-related proteins and mitogen-activated protein kinases (MAPKs) in the retinal pigment epithelium (RPE) of adult male dark Agouti rats. In control rats, 5 mg/kg/d trans-resveratrol administration for 30 days increased gene expressions of tumor suppressor protein 53, Bcl2-associated X protein, B-cell lymphoma-2 (Bcl2), Caspase-3 (CASP3), CASP8 and CASP9, p38αMAPK, c-Jun N-terminal kinase-1 (JNK1), and extracellular signal-regulated kinase-1 (ERK1). On the other hand, diabetes decreased gene expressions of CASP3, CASP8, p38αMAPK, JNK, and ERK1. Trans-resveratrol reversed the inhibited gene expressions of CASP8, p38αMAPK, JNK, and ERK1 to normal control levels in diabetic rats. Trans-resveratrol normalized diabetes-induced upregulation of CASP3 and -9, cytochrome-c, Bcl-2, and ERK1 proteins. In conclusion, Trans-resveratrol-induced alterations in gene expressions do not seem to affect RPE functions as they do not reflect as altered protein functions. Trans-resveratrol imparts its protective effects by normalizing apoptosis-related proteins and ERK1 but does not affect JNK proteins. Trans-resveratrol causes cytostasis in RPE of normal rats by upregulating Bcl2 protein and apoptotic proteins.
Copyright © 2021. Published by Elsevier B.V.

Author