The pituitary gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play a prominent role in the control of gonadal functions. Therefore, their use in the treatment of fertility disorders (e. g. anovulatory anestrus) as well as in biotechnology (e. g. superovulation, hormone programs for cycle synchronization) is of substantial interest. Preparations of FSH or LH are relatively expensive due to the laborious extraction from pituitary tissue and are therefore reserved for special indications. In primates and equids, the chorionic epithelium expresses an LH-like molecule (chorionic gonadotrophin, CG). Equine CG (eCG) selectively binds to LH receptors in equids. In all other domestic mammalian species, equine CG (eCG) shows an extraordinarily high FSH activity in addition to its LH activity (“dual activity”). Since its market launch, this has therefore gained considerable importance as a comparatively inexpensive FSH analogue, mainly for use in ruminants and pigs. In contrast to the human CG (hCG), which may be isolated non-invasively from the urine of pregnant women and is widely used as LH analogue, eCG must be extracted from the blood of pregnant donor mares, as eCG concentrations in urine are only minimal. Following reports of deaths and suffering of donor mares associated with eCG collection in South American settings, the current practice of eCG production has given rise to increasing public criticism. This has recently led to calls for a general production ban. Primary aim of this review is therefore to summarize the current state of knowledge concerning the properties and biology of this molecule, which is also highly interesting from the point of view of basic science.
Thieme. All rights reserved.