Intrapatient treatment response heterogeneity is under-recognized. Quantitative total bone imaging (QTBI) using F-NaF positron emission tomography/computed tomography (PET/CT) scans is a tool that allows characterization of interlesional treatment response heterogeneity in bone. Understanding spatial-temporal response is important to identify individuals who may benefit from treatment beyond progression.
Men with progressive metastatic castration-resistant prostate cancer (mCRPC) with at least two lesions on bone scintigraphy were enrolled and treated with enzalutamide 160 mg daily (ClinicalTrials.gov identifier: NCT02384382). F-NaF PET/CT scans were obtained at baseline (PET1), week 13 (PET2), and at the time of prostate-specific antigen (PSA) progression, standard radiographic or clinical progression, or at 2 years without progression (PET3). QTBI was used to determine lesion-level response. The primary end point was the proportion of men with at least one responding bone lesion on PET3 using QTBI.
Twenty-three men were enrolled. Duration on treatment ranged from 1.4 to 34.1 months. In general, global standardized uptake value (SUV) metrics decreased while on enzalutamide (PET2) and increased at the time of progression (PET3). The most robust predictor of PSA progression was change in SUV (PET1 to PET3; hazard ratio, 3.88; 95% CI, 1.24 to 12.1). Although overall functional disease burden improved during enzalutamide treatment, an increase in total burden (SUV) was seen at the time of progression, as measured by F-NaF PET/CT. All (22/22) evaluable men had at least one responding bone lesion at PET3 using QTBI.
We found that the proportion of progressing lesions was low, indicating that a substantial number of lesions appear to continue to benefit from enzalutamide beyond progression. Selective targeting of nonresponding lesions may be a reasonable approach to extend benefit.

Author