Ferritinophagy is a form of selective autophagy responsible for degrading intracellular ferritin, mediated by nuclear receptor coactivator 4 (NCOA4). NCOA4 plays significant roles in systemic iron homeostasis, and its disruption leads to simultaneous anemia and susceptibility to iron overload. The importance of iron colorectal cancer pathogenesis is well studied, however the role of ferritinophagy in colon cancer cell growth has not been assessed. Disruption of ferritinophagy via NCOA4 knockout leads to only marginal differences in growth under basal and iron-restricted conditions. Moreover, NCOA4 played no significant role in cell death induced by 5-fluorouracil and erastin. Western blot analysis for ferritin and transferrin receptor 1 found a dose-dependent effect on expression in both proteins in wild-type and NCOA4 knockout cell lines, but further investigation revealed no difference in growth response when treated at both high and low doses. Our data demonstrate a marginal role for ferritinophagy in growth both under normal and cytotoxic conditions in colon cancer cells, as well as a possible compensatory mechanism in colon cancer cells in response to ferroptosis induction. This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.