BMP15 encodes an oocyte factor with a relevant role for folliculogenesis as homodimer or cumulin heterodimer (BMP15-GDF9). Heterozygous BMP15 variants in the precursor or mature peptide had been associated with primary ovarian insufficiency (POI), but the underlying mechanism remains elusive and a double dose of BMP15 was suggested to be required for adequate ovarian reserve. We uncovered two homozygous BMP15 null variants found in two girls with POI and primary amenorrhea. Both heterozygous mothers reported physiological menopause. We then performed western blot, immunofluorescence and reporter assays to investigate how previously reported missense variants, p.Y235C and p.R329C, located in the precursor or mature domains of BMP15, may affect protein function. The p.R329C variant demonstrates an impaired colocalization with GDF9 at confocal images and diminished activation of the SMAD pathways at western blot and reporter assays in COV434 follicular cell line. In conclusion, BMP15 null mutations cause POI only in the homozygous state, thus discarding the possibility that isolated BMP15 haploinsufficiency can cause evident ovarian defects, Alternatively, heterozygous BMP15 missense variants may affect ovarian function by interfering with cumulin activity. Our data definitely supports the fundamental role of BMP15 in human ovarian folliculogenesis. This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.