The emergence of invasive Haemophilus influenzae infections in vaccinated patient is a public health concern. We have investigated the genomic basis of invasiveness and possible vaccine failure in H. influenzae causing invasive disease in vaccinated and unvaccinated children in Brazil. Three H. influenzae strains isolated from blood cultures of paediatric patients were sequenced. Serotype, MLST, resistome and virulome were predicted using bioinformatic tools, whereas single nucleotide polymorphisms (SNPs) analysis of cap loci and the presence of the putative virulence-enhancing IS1016-bexA partial deletion were predicted in silico. Infections were caused by H. influenzae type a (Hia), type b (Hib) and nontypeable (NTHi), belonging to international high-risk clones of sequence types ST23, ST6 and ST368, respectively, which have been identified in North American, European and Asian countries. Convergence of ampicillin resistance and virulence in Hib-ST6 was supported by bla and deletion in the bexA gene, whereas presence of SNPs in the cap-b locus was associated with antigenic modifications of the capsule structure. Hia-ST23 and NTHi-ST368 strains carried galU, lpsA, opsX, rfaF, iga1, lgtC and lic1/lic2 virulence genes, associated with colonization, adaptation and damage to the lung, or invasiveness. In summary, deletion in the bexA gene and presence of SNPs in the cap locus of Hib could be contributing to invasive disease and possible vaccine failure in pediatric patients, whereas serotype replacement of Hib with type “a” and NTHi strains denotes the ability of non-vaccine serotypes to re-colonize vaccinated patients. Finally, the dissemination of international high-risk clones of H. influenzae emphasizes the importance of monitoring changes in the molecular epidemiology of invasive H. influenzae disease.
Copyright © 2020. Published by Elsevier Ltd.