CUL2 plays a crucial role in proteolysis by preserving the balance between normal growth and uncontrolled proliferation. HSPA9 safeguards the integrity of protein interactions and supports cellular homeostasis. In carcinomas, HSPA9 and CUL2 appear to protect neoplastic cells from internal and external damage. In prostate tumors they are apparently associated with increased risk of unfavorable outcomes, but information remains scarce. In this study we evaluated CUL2 and HSPA9 expression in neoplastic and non-neoplastic prostate tissue and Gleason pattern 3 and 4 adenocarcinoma to identify associations with ISUP prognostic groups and postoperative disease progression. The records of 636 radical prostatectomy patients were reviewed retrospectively and microarrays were mounted with paraffin-embedded adenocarcinoma and non-neoplastic tissue. We evaluated the ability of HSPA9 and CUL2 to predict postoperative PSA outcomes, response to adjuvant/salvage therapy and systemic disease. HSPA9 and CUL2 were diffusely expressed. HSPA9 expression was associated with increased risk of high-grade adenocarcinoma, while HSPA9 and CUL2 were associated with biochemical failure after salvage therapy. In conclusion, HSPA9 and CUL2 were highly expressed in prostate tissue, especially in neoplastic cells. HSPA9 and CUL2-positive Gleason pattern 3 adenocarcinoma was more likely to be associated with Gleason pattern 4 or 5, while HSPA9 and CUL2-positive Gleason pattern 4 adenocarcinoma was less likely to belong to ISUP groups 1 and 2. Staining for HSPA9 and CUL2 can help identify patients at increased risk of recurrence after salvage therapy.
Copyright © 2021 Elsevier Inc. All rights reserved.