The role of IL-6 signalling in hypertensive heart disease and its sequelae is controversial. Our group demonstrated that Bazedoxifene suppressed IL-6/gp130 signalling in cancer cells but its effect on myocardial pathology induced by pressure overload is still unknown. We explored whether Bazedoxifene could confer benefits in wild-type C57BL/6J mice suffering from transverse aortic constriction (TAC) and the potential mechanisms in H9c2 myoblasts. Mice were randomized into three groups (Sham, TAC, TAC+Bazedoxifene, n = 10). Morphological and histological observations suggested TAC aggravated myocardial remodelling while long-term intake of Bazedoxifene (5 mg/kg, intragastric) attenuated pressure overload-induced pathology. Echocardiographic results indicated Bazedoxifene rescued cardiac function in part. We found Bazedoxifene decreased the mRNA expression of IL-6, MMP2, Col1A1, Col3A1 and periostin in murine hearts after 8-week surgery. By Western blot detection, we found Bazedoxifene exhibited an inhibition of STAT3 activation in mice three hours and 8 weeks after TAC. Acute TAC stress (3 hours) led to down-regulated ratio of LC3-Ⅱ/LC3-Ⅰ, while in mice after long-term (8 weeks) TAC this ratio becomes higher than that in Sham mice. Bazedoxifene inverted the autophagic alteration induced by TAC at both two time-points. In H9c2 myoblasts, Bazedoxifene suppressed the IL-6-induced STAT3 activation. Moreover, IL-6 reduced the ratio of LC3-Ⅱ/LC3-Ⅰ, promoted P62 expression but Bazedoxifene reversed both changes in H9c2 cells. Our data suggested Bazedoxifene inhibited IL-6/gp130 signalling and protected against cardiac remodelling together with function deterioration in TAC mice.
© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

Author