Tubal endometriosis (tubal EM) is a subtype of endometriosis (EM) associated with fallopian tube impairments and infertility. The molecular mechanism underlying tubal EM is not conclusive, we assume an aberrant transcriptome of fallopian tube epithelium and microenvironment changes caused by cytokines in tubal fluid are possible causes. The aim of this study was to identify potential hub mRNAs/proteins of tubal EM through integrated transcriptomic and proteomic analyses, and to elucidate significant pathways, cellular functions, and interaction networks during the initiation and progression of tubal EM. We obtained human fallopian tube epithelium and tubal fluid samples from patients with and without tubal EM. Tubal epithelia were analyzed using microarray and tubal fluid was analyzed using quantitative label-free LC-MS/MS. We identified differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) and determined common mRNAs/protein. We observed 35 commonly deregulated mRNAs/proteins, and IPA indicated that cellular movement, inflammatory response, and immune cell trafficking were significantly activated during the pathogenesis of tubal EM. We also identified acute phase response signaling pathway activation as a unique pathogenesis signature of tubal EM. Our results demonstrate that an integrated analysis of the transcriptome and proteome has the potential to reveal novel disease mechanisms at a molecular level.