There is an international shortage of donor corneas for transplantation to treat the 1.5-2.0 million new cases of blindness secondary to corneal disease. Research has therefore been directed towards the development of artificial corneas using alternative materials such as collagen. The biocompatibility of an acellular collagen-based scaffold for anterior lamellar keratoplasty was investigated in vivo in a rabbit model. This scaffold has previously shown promise as a corneal substitute in vitro. Slit-lamp and Optical Coherence Tomography examinations were carried out at 2 weeks, 1, 2, 3, and 6 months post-operatively. Graft-host integration was investigated using immunohistochemistry of the cornea at 6 months. Results showed that the graft was biocompatible, supported corneal re-epithelialisation, and showed no signs of rejection. Migration of stromal cells into areas of the graft was observed, however this was accompanied by extensive graft digestion. Whilst the scaffold was biocompatible, further modifications to the material or supplementation with matrix metalloproteinase inhibitors are required to bring us closer to a stable and fully integrated corneal substitute.
Copyright © 2021. Published by Elsevier Ltd.