Drug resistance is the major obstacle of gemcitabine-based chemotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC). Many long non-coding RNAs (lncRNAs) are reported to play vital roles in cancer initiation and progression. Here, we report that lncRNA SLC7A11-AS1 is involved in gemcitabine resistance of PDAC. SLC7A11-AS1 is overexpressed in PDAC tissues and gemcitabine-resistant cell lines. Knockdown of SLC7A11-AS1 weakens the PDAC stemness and potentiates the sensitivity of resistant PDAC cells toward gemcitabine in vitro and in vivo. SLC7A11-AS1 promotes chemoresistance through reducing intracellular reactive oxygen species (ROS) by stabilizing nuclear factor erythroid-2-related factor 2 (NRF2), the key regulator in antioxidant defense. Mechanically, SLC7A11-AS1 is co-localized with β-TRCP1 in the nucleus. The exon 3 of SLC7A11-AS1 interacts with the F-box motif of β-TRCP1, the critical domain that recruits β-TRCP1 to the SCF E3 complex. This interaction prevents the consequent ubiquitination and proteasomal degradation of NRF2 in the nucleus. Our results demonstrate that the overexpression of SLC7A11-AS1 in gemcitabine-resistant PDAC cells can scavenge ROS by blocking SCF-mediated ubiquitination and degradation of NRF2, leading to a low level of intracellular ROS, which is required for the maintenance of cancer stemness. These findings suggest SLC7A11-AS1 as a therapeutic target to overcome gemcitabine resistance for PDAC treatment.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
For latest news and updates